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Lecture /7.9.1 :
Unrestrained Beams |

SUMMARY: This lecture is restricted to beams whose design may be based on simple strength
of materials considerations. Behaviour in simple bending is discussed, leading to the concept
of section modulus as the basis for strength design. Subsidiary considerations of shear
strength, resistance to local loads and adequate stiffness against deflection are also
mentioned. Behaviour under complex loading, producing bending about both principal axes,
or combined bending and torsion is introduced.



ADDITIONAL NOTATION

C coefficient to account for type of loading
d overall depth

El, flexural rigidity about the minor axis

f, design strength of material

f, material yield strength

i, minor axis radius of gyration

k coefficient to account for conditions of lateral
support

L span

M, rq buckling resistance moment
M, elastic critical buckling moment
M, plastic moment of cross-section

M4 moment resistance of cross-section

t; flange thickness

u lateral deflection

o parameter in design formula, see Equation (2)
7 reduction factor for lateral-torsional buckling

A beam slenderness

A7 basic slenderness

parameter used to determine ;, see Equation (4)
¢ twist

¢ parameter used to determine 7y, see Equation

(2)

v moment ratio, see Equation (5)



1. INTRODUCTION

When designing a steel beam it is usual to think first of the need to provide adequate strength and
stiffness against vertical bending. This leads naturally to a cross-sectional shape in which the
stiffness in the vertical plane is much greater than that in the horizontal plane. Sections normally
used as beams have the majority of their material concentrated in the flanges, which are relatively
narrow so as to prevent local buckling. The need to connect beams to adjacent members with ease
normally suggests the use of an open section, for which the torsional stiffness will be comparatively
low. Figure 1, which compares section properties for four different shapes of equal area, shows that
the high vertical bending stiffness of typical beam sections is obtained at the expense of both

horizontal bending and torsional stiffness.



1. INTRODUCTION
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Figure 1 Types of cross-section used as beams

showing relative values of section

properties




2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING

It is known from our understanding of the behaviour of struts that, whenever a slender structural
element is loaded in its stiff plane (axially in the case of the strut), there exists a tendency for it to
fail by buckling in a more flexible plane (by deflecting sideways in the case of the strut). Figure 2
illustrates the response of a slender cantilever beam to a vertical end load; this phenomenon is
termed lateral-torsional buckling. Although it involves both a lateral deflection (u) and twisting
about a vertical axis through the web (f), as shown in Figure 3, this type of instability is quite similar
to the simpler flexural buckling of an axially loaded strut. Loading the beam in its stiffer plane (the
plane of the web) has induced a failure by buckling in a less stiff-direction (by deflecting sideways

and twisting).



2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING
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2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING

Of course, many types of construction effectively prevent this form of buckling, thereby enabling
the beam to be designed with greater efficiency as fully restrained (see Lecture 7.8.1). In this
context it is important to realise that during erection of the structure certain beams may well
receive far less lateral support than will be the case when floors, decks, bracings, etc., are present,
so that stability checks, at this stage, are also necessary.

Lateral-torsional instability influences the design of laterally unrestrained beams in much the same
way that flexural buckling influences the design of columns. Thus the bending strength will now be a
function of the beam's slenderness, as indicated in Figure 4, requiring the use in design of an
iterative procedure similar to the use of column curves in strut design. However, because of the
type of structural actions involved, the analysis of lateral-torsional buckling is considerably more
complex. This is reflected in a design approach which requires a rather greater degree of
calculation.
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2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING
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Stress distnbution

3. SIMPLE PHYSICAL MODEL

Before considering the analysis of the problem, it is useful _

. .. . . . bending 3
to attempt to gain an insight into the physical behaviour by SFFAD /
considering a simplified model. Since bending of an I- !
section beam is resisted principally by the tensile and /'/
compressive forces developed in two flanges, as shown in A
Figure 5, the compression flange may be regarded as a
strut. Compression members exhibit a tendency to buckle M /,/ /
and in this case the weaker direction would be for the Vo
flange to buckle downwards. However, this is prevented by e
the presence of the web. Therefore the flange is forced to
buckle sideways, which will induce some degree of twisting
in the section as the web too is required to deform. Whilst
this approach neglects the real influence of torsion and the " "~
role of the tension flange, it does, nevertheless, equivalent strut
approximate the behaviour of very deep girders with very .
thin webs or of trusses or open web joists. Indeed, early wa
attempts at analysing lateral-torsional buckling started with
this approach.

Compression flange

Figure b Approximation of beam buckling problem
as a strut problem



4. FACTORS INFLUENCING LATERAL STABILITY

The compression flange/strut analogy, discussed in the previous section, is also helpful in understanding
the following:

1. The buckling load of the beam is likely to be dependent on its unbraced span, i.e.the distance between

points at which lateral deflection is prevented, and on its lateral bending stiffness (EL,) because strut
resistance pEL,/L2.

2. The shape of the cross-section may be expected to have some influence, with the web and the tension
flange being more important for relatively shallow sections, than for deep slender sections. In the
former case the proximity of the stable tension flange to the unstable compression flange increases

stability and also produces a greater twisting of the cross-section. Thus torsional behaviour becomes
more important.



4. FACTORS INFLUENCING LATERAL STABILITY

3. For beams under non-uniform moment, the force in the compression flange will no longer be
constant, as shown in Figure 6. Therefore such members might reasonably be expected to be more

stable than similar members under a more uniform pattern of moment.
l 5 MC‘E“ ;_\.D BM
=

|--|.L F|

A

Beam and loading

M| | M —_—— Ml//lﬁm

M, .=FL/4

Fundamental Situations less prone to
case instability

Bending moment diagrams {pattern of compressive force in top flange is similar}

Figure 6 Effect of non-uniformm moment on lateral-torsional buckling



4. FACTORS INFLUENCING LATERAL STABILITY
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lateral-torsional buckling
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5. BRACING AS A MEANS OF IMPROVING PERFORMANCE

Bracing may be used to improve the strength of a beam that is liable to lateral-torsional instability.
Two requirements are necessary:

The bracing must be sufficiently stiff to hold the braced point effectively against lateral movement
(this can normally be achieved without difficulty).

The bracing must be sufficiently strong to withstand the forces transmitted to it by the main
member (these forces are normally a percentage of the force in the compression flange of the

braced member).



5. BRACING AS A MEANS OF IMPROVING PERFORMANCE

—\— R pi
Providing these two conditions are satisfied, then the 5 ]%B ]%C .
full in-plane strength of a beam may be developed :
through braces at sufficiently close spacing. Figure 8, ] L]
which illustrates buckled shapes for beams with
intermediate braces, shows how this buckling involves k| N

the whole beam. In theory, bracing should prevent
either lateral or torsional displacement from occurring.
In practice, consideration of the buckled shape of the Beam loaded by cross beams which provide
beam cross-section shown in Figure 3 suggests that lateral support to points B & C

bracing is potentially most effective when used to resist
the largest components of deformation, i.e. a lateral
brace attached to the top flange is likely to be more
effective than a similar brace attached to the bottom
flange.

Plan view of buckled shape

Figure 8 Buckling of beams provided with
lateral bracing




6. DESIGN APPLICATION

Direct use of the theory of lateral-torsional instability for design
is inappropriate because:

 The formulae are too complex for routine use, e.g. Equation
(17) of Lecture 7.9.2.

 Significant differences exist between the assumptions which
form the basis of the theory and the characteristics of real
beams. Since the theory assumes elastic behaviour, it provides
an upper bound on the true strength (this point is discussed in
general terms in Lecture 6.6.2).

Figure 9 compares a typical set of lateral-torsional buckling test
data obtained using actual hot-rolled sections with the
theoretical elastic critical moments given

o Mer
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Figure 9 Comparison of test data with
theaoretical elastic critical
moments
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6. DESIGN APPLICATION

In Figure 9a only one set of data for a narrow flanged beam section is shown. The use of the A,; non-
dimensional format in Figure 9b has the advantage of permitting results from different test series
(using different cross-sections and different material strengths) to be compared directly. In both
figures three distinct regions of behaviour can be observed:

e Stocky beams which are able to attain M, with values of A ; below about 0,4 in Figure 9b.

pl’

* Slender beams which fail at moments close to M_,, with values of A; above 1,2 in Figure 9b.

with 0,4 <A;<1,2in

cr

* Beams of intermediate slenderness which fail to reach either M, or M
Figure 9b.

cr

Only in the case of beams in region 1 does lateral stability not influence design. For beams in region
2, which covers much of the practical range of beams without lateral restraint, design must be
based on considerations of inelastic buckling suitably modified to allow for geometrical
imperfections, residual stresses, etc.,. Thus both theory and tests must play a part, with the
inherent complexity of the problem being such that the final design rules are likely to involve some
degree of empiricism.



6. DESIGN APPLICATION

Section 7 outlines the provisions of Eurocode 3 [1] with regard to beam design, assuming typical
sections as shown in Figure 10a and 10b. It should be noted that sections of the type illustrated in
Figure 10b, with one axis of symmetry, e.g.channels, may only be included if the section is bent
about the axis of symmetry, i.e. loads are applied through the shear centre parallel to the web of
the channel. Singly-symmetrical sections bent in the other plane, e.g. an unequal flanged I-section
bent about its major-axis as shown in Figure 10c, may only be treated by an extended version of the
theory, principally because the section's shear centre no longer lies on the neutral axis.

[ [  E— | [
Shear
T
T Neutral
] axis
Neutral Centroid Centroid Centroid
axis & shear YShear
centre i
' | —— | | |
(@) (b} (c)
Equal flanged I Channel Unequal flanged I

Figure 10 Equal flanged section and examples of sections

with one axis of symmetry



/. METHOD OF EUROCODE 3

The buckling resistance moment [1] is given by:

Mpra = Xt Mgg (1)

where M., is the moment resistance of the cross-section
Y7 1S the reduction factor for lateral-torsional buckling

In determining Mg, the section classification should, of course, be noted and the appropriate
section modulus used in conjunction with the material design strength f,. The value of y,; depends
on the beam's slenderness A ; and is given by:

Yur = 1/ Ay + (057 AF21Y2 (2)
where ¢7 = 0,5 [1 + o (A7 - 0,20) + A %]
and o = 0,21 for rolled sections

o5 = 0,49 for welded beams



/. METHOD OF EUROCODE 3

Figure 11 illustrates
the relationship
between c; and A,
showing how it
follows the pattern of
behaviour exhibited
by the test data of
Figure 9.

When A; <= 0,4, the
value of y 1 is
sufficiently close to
unity that design may
be based on the full
resistance moment
My

AT

Reduction factor

1.0

1.0

0,6

0,4

0,2

Rolled sections

Welded beams

0,b 1,0 1.b

Figure 11 Lateral-torsional buckling reduction factor
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/. METHOD OF EUROCODE 3

The slenderness A5, which is a measure of the extent to which lateral-torsional buckling reduces a
beam's load carrying resistance, is a function of My, and M_. M_, is the elastic critical buckling
moment, a quantity similar in concept to the Euler load for a strut since it is derived from a theory
(see Lecture 7.9.2) that assumes "perfect" behaviour, i.e. an initially straight member, elastic
response, no misalignment of the loading, etc..

Thus A7 is taken as:
A7 = Mgy / M ]1/2 (3)

For calculation purposes Equation (3) may be rewritten as:

Ar = [Ng /] (4)
2 n o
where A, = w[E/f ] T T
= 93,9[235/f ]/ Ll'“iz -
[Cl]lfﬂ[1+_( 1:)'2 ]l.l'4
where App= 20 “df g (5)
and vy is the end moment ratio defined in Figure 13. Figuio 13 Morent gradient loading over beam

span L
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/. METHOD OF EUROCODE 3

Taking as an example the end span of a continuous beam for which y = 0 gives C;=1,75 and
thus A7 will be reduced to 0,76 (= 1/ V1,75) of the value for uniform moment, leading to an increase

in ¢ and thus in M.

Variations in the conditions of lateral restraint may be treated by introducing k-coefficients to
modify the geometrical length L into kL when determining M_,. For conditions with more restraint,
values of k < 1,0 are appropriate, leading to an increase in M_, and thus, via a reduction in A7, to

increases in y,r and Mz,



/. METHOD OF EUROCODE 3

Similarly additional C-coefficients may be used directly in
the determination of M, to provide modified values

of A; appropriate for a wide range of load types. In
particular, this method should be used to calculate the
reduced M, appropriate for destabilising loads. These are
loads that act above the level of the beam's shear centre
and are free to move sideways with the beam as it
buckles, as shown in Figure 14.

For cross-sections of the type illustrated in Figure 9c, for
which the shear centre and centroid do not lie on the
same horizontal axis, evaluation of M_ becomes more
complex.

As the beam buckles
P acts through this
deflection to produce a
disturbing effect

Figure 14 Destabilising loading



/. METHOD OF EUROCODE 3

How to obtaina M_?

e by using formula:

n?El, I, L2Gl,
M. = C, 2 It 2E +(Gz,)° - Cyz))

4 z

where

zg — distance beetwen point aplication and the centre of the gravity of the beam

ERE

Zg}o Zg:(] Zg{(]




/. METHOD OF EUROCODE 3

C1, C2 — coefficients responsible for adjusting formula to real bending moment distribution.
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8. CONCLUDING SUMMARY

e Beams that are not restrained along their length and are bent about their strong axis are subject
to lateral torsional buckling.

* Unbraced span, lateral slenderness (L/i,), cross-sectional shape (torsional and warping rigidities),
moment distribution and end restraint are the primary influences on buckling resistance.

* Bracing of sufficient stiffness and strength, that restrains either torsional or lateral deformations,
may be used to increase buckling resistance.

* Although elastic critical load theory provides a background for understanding the behaviour of
laterally unrestrained beams, it requires both simplifications and empirical modification if it is to
form a suitable basis for a design approach.

* |n order to check the lateral buckling resistance of a trial section, its effective slenderness A ; must
first be obtained.

e Variation in either lateral support conditions or the form of the applied loading may be
accommodated in the design process by means of coefficients k and C, used to modify either the
basic slenderness A ; or the basic elastic critical moment M.
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10. ADDITIONAL READING
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Publishers 1983.
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McGraw Hill 1977.
Chapter 3 deals with laterally unrestrained beams.

3. Timoshenko, S. P. and Gere, J. M., "Theory of Elastic Stability" Second Edition, McGraw Hill
1961.
Basic derivations for the elastic critical moment for a variety of beam problems are provided in
Chapter 6.

4. Bleich, F., "Buckling Strength of Metal Structures”, McGraw Hill 1952.
Chapter 4 presents the basic theory of lateral buckling of beams.

5. Galambos, T. V., "Structural Members and Frames", Prentiss Hall 1968.
Chapter 2 deals with the fundamentals of elastic behaviour, whilst Chapter 3 covers elastic and
inelastic behaviour and design of laterally unrestrained beams.
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and Hall, Second Edition, 1988.

7. Laterally unrestrained beams are dealt with in.Chapter 6.
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