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Lecture 7.9.1 : 
Unrestrained Beams I

SUMMARY: This lecture is restricted to beams whose design may be based on simple strength 
of materials considerations. Behaviour in simple bending is discussed, leading to the concept 
of section modulus as the basis for strength design. Subsidiary considerations of shear 
strength, resistance to local loads and adequate stiffness against deflection are also 
mentioned. Behaviour under complex loading, producing bending about both principal axes, 
or combined bending and torsion is introduced.



ADDITIONAL NOTATION
C coefficient to account for type of loading
d overall depth

EIz flexural rigidity about the minor axis
fd design strength of material
fy material yield strength

iz minor axis radius of gyration
k coefficient to account for conditions of lateral
support
L span

Mb.Rd buckling resistance moment
Mcr elastic critical buckling moment
Mpl plastic moment of cross-section

MRd moment resistance of cross-section

tf flange thickness
u lateral deflection

αLT parameter in design formula, see Equation (2)

χLT reduction factor for lateral-torsional buckling
λLT beam slenderness
λLT basic slenderness
parameter used to determine LT, see Equation (4)

φ twist
φLT parameter used to determine χLT, see Equation 
(2)

ψ moment ratio, see Equation (5)
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1. INTRODUCTION
When designing a steel beam it is usual to think first of the need to provide adequate strength and 
stiffness against vertical bending. This leads naturally to a cross-sectional shape in which the 
stiffness in the vertical plane is much greater than that in the horizontal plane. Sections normally 
used as beams have the majority of their material concentrated in the flanges, which are relatively 
narrow so as to prevent local buckling. The need to connect beams to adjacent members with ease 
normally suggests the use of an open section, for which the torsional stiffness will be comparatively 
low. Figure 1, which compares section properties for four different shapes of equal area, shows that 
the high vertical bending stiffness of typical beam sections is obtained at the expense of both 
horizontal bending and torsional stiffness.
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1. INTRODUCTION
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2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING
It is known from our understanding of the behaviour of struts that, whenever a slender structural 
element is loaded in its stiff plane (axially in the case of the strut), there exists a tendency for it to 
fail by buckling in a more flexible plane (by deflecting sideways in the case of the strut). Figure 2 
illustrates the response of a slender cantilever beam to a vertical end load; this phenomenon is 
termed lateral-torsional buckling. Although it involves both a lateral deflection (u) and twisting 
about a vertical axis through the web (f), as shown in Figure 3, this type of instability is quite similar 
to the simpler flexural buckling of an axially loaded strut. Loading the beam in its stiffer plane (the 
plane of the web) has induced a failure by buckling in a less stiff-direction (by deflecting sideways 
and twisting).
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2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING
Of course, many types of construction effectively prevent this form of buckling, thereby enabling 
the beam to be designed with greater efficiency as fully restrained (see Lecture 7.8.1). In this 
context it is important to realise that during erection of the structure certain beams may well 
receive far less lateral support than will be the case when floors, decks, bracings, etc., are present, 
so that stability checks, at this stage, are also necessary.
Lateral-torsional instability influences the design of laterally unrestrained beams in much the same 
way that flexural buckling influences the design of columns. Thus the bending strength will now be a 
function of the beam's slenderness, as indicated in Figure 4, requiring the use in design of an 
iterative procedure similar to the use of column curves in strut design. However, because of the 
type of structural actions involved, the analysis of lateral-torsional buckling is considerably more 
complex. This is reflected in a design approach which requires a rather greater degree of 
calculation.
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2. RESPONSE OF SLENDER BEAMS TO VERTICAL LOADING
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3. SIMPLE PHYSICAL MODEL
Before considering the analysis of the problem, it is useful 
to attempt to gain an insight into the physical behaviour by 
considering a simplified model. Since bending of an I-
section beam is resisted principally by the tensile and 
compressive forces developed in two flanges, as shown in 
Figure 5, the compression flange may be regarded as a 
strut. Compression members exhibit a tendency to buckle 
and in this case the weaker direction would be for the 
flange to buckle downwards. However, this is prevented by 
the presence of the web. Therefore the flange is forced to 
buckle sideways, which will induce some degree of twisting 
in the section as the web too is required to deform. Whilst 
this approach neglects the real influence of torsion and the 
role of the tension flange, it does, nevertheless, 
approximate the behaviour of very deep girders with very 
thin webs or of trusses or open web joists. Indeed, early 
attempts at analysing lateral-torsional buckling started with 
this approach.
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4. FACTORS INFLUENCING LATERAL STABILITY
The compression flange/strut analogy, discussed in the previous section, is also helpful in understanding 
the following:
1. The buckling load of the beam is likely to be dependent on its unbraced span, i.e.the distance between 

points at which lateral deflection is prevented, and on its lateral bending stiffness (ELz) because strut 
resistance µELz/L2.

2. The shape of the cross-section may be expected to have some influence, with the web and the tension 
flange being more important for relatively shallow sections, than for deep slender sections. In the 
former case the proximity of the stable tension flange to the unstable compression flange increases 
stability and also produces a greater twisting of the cross-section. Thus torsional behaviour becomes 
more important.
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4. FACTORS INFLUENCING LATERAL STABILITY
3. For beams under non-uniform moment, the force in the compression flange will no longer be 

constant, as shown in Figure 6. Therefore such members might reasonably be expected to be more 
stable than similar members under a more uniform pattern of moment.
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4. FACTORS INFLUENCING LATERAL STABILITY
4. End restraint which inhibits 

development of the buckled 
shape, shown in Figure 3, is 
likely to increase the 
stability of the beam. 
Consideration of the 
buckling deformations (u 
and f) should make it clear 
that this refers to rotational 
restraint in plan, i.e.about
the z-axis (refer back to 
Figure 5 and 3). Rotational 
restraint in the vertical plane 
affects the pattern of 
moments in the beam (and 
may thus also lead to 
increased stability) but does 
not directly alter the 
buckled shape, as shown in 
Figure 7. Lecture 7.9.1: Unrestrained Beams I 14
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5. BRACING AS A MEANS OF IMPROVING PERFORMANCE
Bracing may be used to improve the strength of a beam that is liable to lateral-torsional instability. 
Two requirements are necessary:
The bracing must be sufficiently stiff to hold the braced point effectively against lateral movement 
(this can normally be achieved without difficulty).

The bracing must be sufficiently strong to withstand the forces transmitted to it by the main 
member (these forces are normally a percentage of the force in the compression flange of the 
braced member).
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5. BRACING AS A MEANS OF IMPROVING PERFORMANCE
Providing these two conditions are satisfied, then the 
full in-plane strength of a beam may be developed 
through braces at sufficiently close spacing. Figure 8, 
which illustrates buckled shapes for beams with 
intermediate braces, shows how this buckling involves 
the whole beam. In theory, bracing should prevent 
either lateral or torsional displacement from occurring. 
In practice, consideration of the buckled shape of the 
beam cross-section shown in Figure 3 suggests that 
bracing is potentially most effective when used to resist 
the largest components of deformation, i.e. a lateral 
brace attached to the top flange is likely to be more 
effective than a similar brace attached to the bottom 
flange.

Lecture 7.9.1: Unrestrained Beams I 17



6. DESIGN APPLICATION
Direct use of the theory of lateral-torsional instability for design 
is inappropriate because:
• The formulae are too complex for routine use, e.g. Equation 

(17) of Lecture 7.9.2.

• Significant differences exist between the assumptions which 
form the basis of the theory and the characteristics of real 
beams. Since the theory assumes elastic behaviour, it provides 
an upper bound on the true strength (this point is discussed in 
general terms in Lecture 6.6.2).

Figure 9 compares a typical set of lateral-torsional buckling test 
data obtained using actual hot-rolled sections with the 
theoretical elastic critical moments given
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6. DESIGN APPLICATION
In Figure 9a only one set of data for a narrow flanged beam section is shown. The use of the λLT non-
dimensional format in Figure 9b has the advantage of permitting results from different test series 
(using different cross-sections and different material strengths) to be compared directly. In both 
figures three distinct regions of behaviour can be observed:
• Stocky beams which are able to attain Mpl, with values of λLT below about 0,4 in Figure 9b.

• Slender beams which fail at moments close to Mcr, with values of λLT above 1,2 in Figure 9b.
• Beams of intermediate slenderness which fail to reach either Mpl or Mcr, with 0,4 < λLT < 1,2 in 

Figure 9b.
Only in the case of beams in region 1 does lateral stability not influence design. For beams in region 
2, which covers much of the practical range of beams without lateral restraint, design must be 
based on considerations of inelastic buckling suitably modified to allow for geometrical 
imperfections, residual stresses, etc.,. Thus both theory and tests must play a part, with the 
inherent complexity of the problem being such that the final design rules are likely to involve some 
degree of empiricism.
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6. DESIGN APPLICATION
Section 7 outlines the provisions of Eurocode 3 [1] with regard to beam design, assuming typical 
sections as shown in Figure 10a and 10b. It should be noted that sections of the type illustrated in 
Figure 10b, with one axis of symmetry, e.g.channels, may only be included if the section is bent 
about the axis of symmetry, i.e. loads are applied through the shear centre parallel to the web of 
the channel. Singly-symmetrical sections bent in the other plane, e.g. an unequal flanged I-section 
bent about its major-axis as shown in Figure 10c, may only be treated by an extended version of the 
theory, principally because the section's shear centre no longer lies on the neutral axis.
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7. METHOD OF EUROCODE 3
The buckling resistance moment [1] is given by:

MbRd = χLT MRd (1)
where MRd is the moment resistance of the cross-section

χLT is the reduction factor for lateral-torsional buckling
In determining MRd the section classification should, of course, be noted and the appropriate 
section modulus used in conjunction with the material design strength fd. The value of χLT depends 
on the beam's slenderness λLT and is given by:

χLT = 1/ {φLT + [φLT
2

- λLT
2]1/2} (2)

where φLT = 0,5 [1 + αLT(λLT - 0,20) + λLT
2]

and αLT = 0,21 for rolled sections
αLT = 0,49 for welded beams
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7. METHOD OF EUROCODE 3
Figure 11 illustrates 
the relationship 
between cLT and λLT, 
showing how it 
follows the pattern of 
behaviour exhibited 
by the test data of 
Figure 9. 
When λLT <= 0,4, the 
value of χLT is 
sufficiently close to 
unity that design may 
be based on the full 
resistance moment 
MRd.
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7. METHOD OF EUROCODE 3
The slenderness λLT, which is a measure of the extent to which lateral-torsional buckling reduces a 
beam's load carrying resistance, is a function of MRd and Mcr. Mcr is the elastic critical buckling 
moment, a quantity similar in concept to the Euler load for a strut since it is derived from a theory 
(see Lecture 7.9.2) that assumes "perfect" behaviour, i.e. an initially straight member, elastic 
response, no misalignment of the loading, etc..
Thus λLT is taken as:

λLT = [MRd / Mcr]1/2 (3)
For calculation purposes Equation (3) may be rewritten as:
λLT = [λLT / λ1] (4)

where λ1 = π[E/fy]1/2

= 93,9[235/fy]1/2

where

and ψ is the end moment ratio defined in Figure 13.

Lecture 7.9.1: Unrestrained Beams I 23

http://fgg-web.fgg.uni-lj.si/%7E/pmoze/ESDEP/master/wg07/l0920.htm


7. METHOD OF EUROCODE 3
Taking as an example the end span of a continuous beam for which y = 0 gives C1=1,75 and 
thus λLT will be reduced to 0,76 (= 1/ √1,75) of the value for uniform moment, leading to an increase 
in χLT and thus in MbRd.
Variations in the conditions of lateral restraint may be treated by introducing k-coefficients to 
modify the geometrical length L into kL when determining Mcr. For conditions with more restraint, 
values of k < 1,0 are appropriate, leading to an increase in Mcr and thus, via a reduction in λLT , to 
increases in χLT and MbRd.
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7. METHOD OF EUROCODE 3
Similarly additional C-coefficients may be used directly in 
the determination of Mcr to provide modified values 
of λLT appropriate for a wide range of load types. In 
particular, this method should be used to calculate the 
reduced Mcr appropriate for destabilising loads. These are 
loads that act above the level of the beam's shear centre
and are free to move sideways with the beam as it 
buckles, as shown in Figure 14.
For cross-sections of the type illustrated in Figure 9c, for 
which the shear centre and centroid do not lie on the 
same horizontal axis, evaluation of Mcr becomes more 
complex.
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7. METHOD OF EUROCODE 3
How to obtain a Mcr?
• by using formula:

where
zg – distance beetwen point aplication and the centre of the gravity of the beam
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7. METHOD OF EUROCODE 3
C1, C2 – coefficients responsible for adjusting formula to real bending moment distribution.
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7. METHOD OF EUROCODE 3
• by using numerical analysis:

• LTBeam
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7. METHOD OF EUROCODE 3
• by using numerical analysis:

• LTBeamN
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7. METHOD OF EUROCODE 3
• by using numerical analysis:

• advanced numerical
systems (Abaus, Ansys,…)
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8. CONCLUDING SUMMARY
• Beams that are not restrained along their length and are bent about their strong axis are subject 

to lateral torsional buckling.
• Unbraced span, lateral slenderness (L/iz), cross-sectional shape (torsional and warping rigidities), 

moment distribution and end restraint are the primary influences on buckling resistance.

• Bracing of sufficient stiffness and strength, that restrains either torsional or lateral deformations, 
may be used to increase buckling resistance.

• Although elastic critical load theory provides a background for understanding the behaviour of 
laterally unrestrained beams, it requires both simplifications and empirical modification if it is to 
form a suitable basis for a design approach.

• In order to check the lateral buckling resistance of a trial section, its effective slenderness λLT must 
first be obtained.

• Variation in either lateral support conditions or the form of the applied loading may be 
accommodated in the design process by means of coefficients k and C, used to modify either the 
basic slenderness λLT or the basic elastic critical moment Mcr.
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10. ADDITIONAL READING
1. Narayanan, R., Editor, "Beams and Beam Columns: Stability and Strength", Applied Science 

Publishers 1983.
2. Chen, W. F. and Atsuta, T. "Theory of Beam Columns Volume 2, Space Behaviour and Design", 

McGraw Hill 1977.
Chapter 3 deals with laterally unrestrained beams.

3. Timoshenko, S. P. and Gere, J. M., "Theory of Elastic Stability" Second Edition, McGraw Hill 
1961.
Basic derivations for the elastic critical moment for a variety of beam problems are provided in 
Chapter 6.

4. Bleich, F., "Buckling Strength of Metal Structures", McGraw Hill 1952.
Chapter 4 presents the basic theory of lateral buckling of beams.

5. Galambos, T. V., "Structural Members and Frames", Prentiss Hall 1968.
Chapter 2 deals with the fundamentals of elastic behaviour, whilst Chapter 3 covers elastic and 
inelastic behaviour and design of laterally unrestrained beams.

6. Trahair, N. S. and Bradford, M. A., "The Behaviour and Design of Steel Structures", Chapman 
and Hall, Second Edition, 1988.

7. Laterally unrestrained beams are dealt with in Chapter 6.Lecture 7.9.1: Unrestrained Beams I 33
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